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Abstract

The dynamic behavior of an elastic beam free to slide on two frictional supports is studied under sinusoidal and random

excitations. The beam force–deflection relationship, originally expressed in terms of elliptic functions, is approximated by a

polynomial fit of eleventh order. The friction force is modeled in terms of the sliding velocity and the end slope angle.

Under sinusoidal excitation, the equation of motion of the system is solved numerically and the solution is utilized to

estimate the system transmissibility. It is found that when the excitation frequency is increased beyond resonance, the

friction at the sliding supports improves the transmissibility. The dependence of the response on initial conditions

establishes the basins of attraction for different values of friction coefficient and excitation parameters. The dependence of

the safety integrity factor on excitation amplitude level and friction coefficient reveals that the friction extends the stable

region. Under random excitation, the system response statistics are estimated from Monte Carlo simulation results for

different values of friction coefficient and excitation power spectral density level. The friction is found to result in a

significant reduction of the system response mean square.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Linear vibration isolators are known to be effective if the value of their natural frequency is well below the
excitation frequency. However, they are limited for such applications of moderate environmental
disturbances, and under severe environmental disturbances such as shocks, impact loading, or ground
random motion, their spectrum will definitely contain dangerous low frequencies components. The isolator
under these conditions experiences excessive deflections that can cause over-stress and even damage to the
system. The influence of isolator nonlinearity on its transmissibility depends on whether its stiffness is hard or
soft [1]. It is known that soft nonlinearity causes a reduction in the resonant frequency and the isolation may
be improved.

Nonlinearity becomes important in the study of an isolator when large deflections occur due to the effects of
equipment weight and sustained acceleration. These effects are encountered in the behavior of suspensions of
high-speed vehicles and mounts for sensitive instruments [2]. Many researchers have conducted studies
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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considering various combinations of restoring force and damping functions. Den Hartog [3] reported the exact
solution for the vibratory response of a symmetric system with both coulomb and viscous damping when
subjected to a harmonic forcing function. Ruzicka and Derby [4] presented extensive results for isolation
systems with linear stiffness and nonlinear nth power damping. Hundal and Parnes [5] considered the same
system when subjected to base excitation. Metwalli [6] proposed a model to optimize nonlinear suspension
systems which approach optimal isolation characteristics. Optimized nonlinear isolator systems were found to
outperform their linear counterparts.

The influence of nonlinearity on the performance of these isolators is manifested in shifting the resonance
frequency and possibility of chaotic motion. Other factors include the type of excitation and its frequency
spectrum. Depending on the type of nonlinearity, the resonance frequency may be shifted to the left or right of
the linear resonance frequency on the transmissibility plot. Ravindra and Mallik [7] examined the response of
nonlinear vibration isolation system subjected to force excitation or base excitation. It was found that an
isolator with soft nonlinear characteristics is superior to the one with hard nonlinearity. The effects of
damping on resonance transmissibility and the high-frequency attenuation rate of the transmissibility were
found to be similar to those with a linear restoring force.

Note that in nonlinear isolators the transmitted signal may contain subharmonic, superharmonic, and
sometimes chaotic behavior. Thus, the transmissibility defined by the linear theory of vibration isolation
should be redefined by using a suitable performance index. Lou et al. [8] proposed the ratio of the rms values
of the response amplitude to the excitation amplitude. This index provides a measure of the energy
transmission relationship.

Under harmonic excitation, a nonlinear isolator may exhibit chaotic behavior over a certain range of system
and excitation parameters. A simple method for describing the arbitrary multiaxial loading process of
vibration isolation with large nonlinear stiffness and damping parameters was proposed by Ulanov and
Lazutkin [9]. Qing et al. [10] treated the vibration isolation efficiency of nonlinear vibration–isolation system
in a desired chaotic state. The transmitted force was characterized by a broad frequency band although the
excitation was sinusoidal. In order to control the system in a desired chaotic state, the isolator had to possess
variable stiffness and damping.

Systems subjected to impact and shock loads exhibit severe vibrations, and they need special isolation
means. Impact loading is encountered in many mechanical applications such as pneumatic hammers,
slamming loads on water waves acting on ships and ocean structures, and vibro-impact systems with rigid or
elastic stops. In order to protect a given object against these undesirable disturbances, a vibrating protecting
system is placed between the vibration source and the object. In their research monograph, Alabuzhev et al.
[11] introduced a number of vibration protecting systems with quasi-zero stiffness whose load bearing elastic
elements possess constant positive stiffness as well as devices with negative stiffness. This type of isolators has
been used for vibration isolation of operators’ seats in vehicles [12], impact action hand-held machines [13–15],
and railway car suspensions [13,16]. Systems with negative stiffness have been treated by Gerner et al. [17] and
Yuryev [18] and their performance in the chaotic regime was studied by Goverdovskiy et al. [19], Lee and
Goverdovskiy [20], and Lee et al. [21].

Dufour et al. [22] recommended some modifications of the nonlinear characteristics of isolating mounts
carrying rigid structures subjected to impact loads. The modifications were adapted with respect to impact
vibrations to achieve a well design behavior. The protection of workers against vibrations generated from
hand-held tools requires special vibration isolation means. Dobry and Brzezinski [23] developed strong elastic
nonlinear isolator to minimize the interaction force between the tool and the handle. In an effort to prevent
injuries from impact impulse loads, Balandin et al. [24] presented a review of research activities dealing with
the limiting performance analysis of impact isolation systems. Zhiqing and Pilkey [25] conducted the limiting
performance analysis to study the optimal shock and impact isolation of mechanical systems via wavelet
transform.

A bumpered vibration protection arrangement of a gimbaled electro-optical device was developed by
Veprik et al. [26]. The installation of bumpers with enlarged travel reduces the probability of accidental
impacts and effectively reduces the excessive deflections. However, the presence of bumpers turns the vibration
isolation arrangement into a potential strongly nonlinear vibro-impact system with unfavorable characteristics
[27,28]. In an effort to eliminate these characteristics, Babitsky and Veprik [27] introduced the combination of
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an undamped low-frequency vibration isolator and optimally damped bumpers installed with minimal free
travel distance.

One of the basic requirements of vibration isolators is to reduce the system restoring force, which results in a
reduction of the resonant frequency. Many techniques have been developed to reduce the isolator resonant
frequency. These include the curved cantilever springs for gravitational wave applications [29,30] and the
triangular pre-bent cantilever springs [31–35].

The so-called Euler spring column has been utilized as a vertical isolator. A major advantage of the Euler
spring is that it stores negligible static energy below its working range thereby minimizing both the stored
elastic energy density and the spring mass required to support the suspended test mass [36,37]. This feature
makes Euler springs an excellent candidate as a vertical isolator. The buckled or pre-bent column with fixed
ends was used as a vibration isolator and analyzed by Virgin and Davis [38] and Plaut et al. [39]. The column
was modeled as an extensible elastica, which allows large displacements in equilibrium. It was found that for
sufficiently low damping and sufficiently high column stiffness, the axial transmissibility curves exhibit an
infinite number of peaks. Plaut et al. [40] considered another system consisting of two bars hinged together
through a rotational spring and a rotational dashpot with one end subjected to axial excitation. The equation
of motion of the system, involving nonlinear inertia and nonlinear parametric excitation, was found to possess
no stable solution if the static axial load is greater than the critical load. Chaotic motions were found to occur
for most of the frequencies over the range onoOo2on, where on and are the natural and excitation
frequencies, respectively.

Shoup [41] developed a nonlinear elastic suspension vibration isolator consisting of a pair of flexible strips,
which are clamped in a semicircular shape with a block mass between them. If a load, P, is applied downward
on the mass the upper strip deflects into a shape called the ‘‘nodal elastica’’, while the lower strip deforms into
a shape known as the ‘‘undulating elastica.’’ Note that the stress in the strips is caused by the combined effects
of bending and simple tension or compression. The elastic springs are doubly clamped beams and possess a
beam natural frequency apart from the suspension dynamics. However, elastica springs will not perform as
desired when the frequency of suspension motion is near to the beam natural frequency. The results of large
deflection of a flexible bar were utilized to evaluate the deformation of an elastic ring subjected to two opposite
radial compressive loads. Later, Shoup and Simmonds [42] developed nonlinear suspension systems with
adjustable stiffness rate.

In addition to the above described isolators, other types of nonlinear isolators have been assessed
by Ibrahim [43] in an extensive review article. One of the most interesting systems includes what is referred
to as Gospodnetic–Frisch-Fay beam mounted on three symmetrical frictionless knife-edged supports.
The beam is not restrained from both sides and thus is considered as inextensible, and a closed form
solution for its deflection curve was given in terms of elliptic functions. This beam can be used as a resilient
isolator between the machinery and the base in marine vessels. The beam can also model a load carry-
ing bearing for pressure pipelines against earthquake ground motion [44,45]. The dynamic character-
istic of this beam and its efficacy as a nonlinear isolator was considered by Somnay et al. [46] under
frictionless sliding supports. The present paper is an extension of Ref. [44] by including the influence
of friction.
2. Analytical modeling

Fig. 1(a) shows an elastic beam free to slide at two knife-edged supports under the action of the load P. As
the load increases both the beam length, L, and the end slope angle, c0, increase simultaneously. d denotes the
displacement at the mid-span, x ¼ l/2, where l is the distance between the two supports A and B. Note that L

and l are only equal when the beam is horizontal without any sag. The dependence of the beam deflection on
the applied load was originally derived by Gospodnetic [47] and Frisch-Fay [48]. For frictionless supports, the
deflection of the beam was written in terms of the slope angle c as

dc
ds
¼

M

EI
¼

P

2EI
½ðl=2� xÞ þ ðd � yÞ tan c0�, (1)
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Fig. 1. Schematic diagram a flexible beam free to slide on (a) frictionless and (b) friction supports.
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where M is the bending moment. Taking the derivative with respect to s, gives

d2c
ds2
¼ �k2 dx

ds
þ

dy

ds
tan c0

� �
, (2)

where k2
¼ P/2EI. Integrating both sides with respect to c, gives

1

2

dc
ds

� �2

¼ �k2
½sin c� cos c tan c0� þ C. (3)

At x ¼ l/2, the bending moment vanishes, i.e., ðdc=dsÞc¼c0
¼ 0, and thus C ¼ 0. Accordingly, Eq. (3) can be

written in the form

dc
ds
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcos c tan c0 � sin cÞ

p
¼ sin c

dc
dy
¼ cos c

dc
dx

. (4)

From Eq. (4) it is possible to write

dx ¼ cos cds ¼ cos c
dc

k 2ðtan co cos c� sin cÞ
� �1=2 , (5)

dy ¼ sin cds ¼ sin c
dc

k 2ðtan co cos c� sin cÞ
� �1=2 . (6)

Introducing the transformation of variables cos f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðco � cÞ

p
and cos fo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sin co

p
, and integrating

Eqs. (5) and (6) gives

l ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos co

p
k

ffiffiffi
2
p

cos co cos fo þ sin coF 1
. ffiffiffi

2
p

;fo

	 
	 

, (7)
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y ¼ d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos co

p
k

ffiffiffi
2
p

sin co cos fo � cos cF 1
. ffiffiffi

2
p

;fo

	 
	 

, (8)

where

FðfoÞ ¼ F 1
. ffiffiffi

2
p

;fo

	 

� K 1

. ffiffiffi
2
p	 

þ 2E 1

. ffiffiffi
2
p	 

� 2E 1

. ffiffiffi
2
p

;fo

	 

¼ 0:8472þ F 1

. ffiffiffi
2
p

;fo

	 

� 2E 1

. ffiffiffi
2
p

;fo

	 

and F 1

� ffiffiffi
2
p

;fo

� 
, E 1

� ffiffiffi
2
p

;fo

� 
, K 1

� ffiffiffi
2
p� 

and E 1
� ffiffiffi

2
p� 

are the incomplete integral of the first kind, the
incomplete integral of the second kind, the complete integral of the first kind and the complete integral of the
second kind, respectively.

Eqs. (7) and (8) may also be written in the form (Somnay et al. [46])

Pl2

EI
¼ 8 cos co

ffiffiffi
2
p

cos co cos fo þ sin coF 1
. ffiffiffi

2
p

;fo

	 
	 
2
, (9)

d

l
¼

1

2

ffiffiffi
2
p

sin co cos fo � cos coF 1
� ffiffiffi

2
p

;fo

� 
ffiffiffi
2
p

cos co cos fo þ sin coF 1
� ffiffiffi

2
p

;fo

�  . (10)

If friction at the supports is considered, the reaction at the supports consists of normal and tangential
components, as shown in Fig. 1(b). The support reaction, R, is inclined at an angle (co�l) to the vertical,
where m ¼ tan l ¼ Ff/N, is the coefficient of friction. The vertical component of the reaction R must balance
P/2, hence

R ¼
P

2 cosðco � lÞ
. (11)

The equations developed in the frictionless model can be used again by replacing co by (co�l). Eqs. (9) and
(10) with the appropriate substitution are

Pl2

EI
¼ 8 cosðco � lÞ

ffiffiffi
2
p

cosðco � lÞ cos fo þ sinðco � lÞFðp;foÞ

	 

, (12)

d

l
¼

1

2

ffiffiffi
2
p

sinðco � lÞ cos fo � cosðco � lÞFðp;foÞffiffiffi
2
p

cosðco � lÞ cos fo þ sinðco � lÞFðp;foÞ

 !
. (13)

The force–deflection relationship is approximated as best-fit polynomial of the form

Pl2

EI
¼ a1

d

l

� �
þ a3

d

l

� �3

þ a5
d

l

� �5

þ a7
d

l

� �7

þ a9
d

l

� �9

þ a11
d

l

� �11

, (14)

where the coefficients a1 through a11 are the coefficients of the best-fit polynomial, and giving by the values:
a1 ¼ 48.0, a3 ¼ �402.0, a5 ¼ 1670.6, a7 ¼ �3749.0, a9 ¼ 4256.4, a11 ¼ �1903.5.

Fig. 2 shows the dependence of the beam deflection on the applied load for three values of friction
coefficient, m ¼ 0.0, 0.1, 0.2. It is seen that as the friction at the support increases the peak load and deflection
increase as well.

The sliding velocity, V, defines the direction of the friction force. The friction–velocity relationship may be
modeled as a continuous transcendental function [49]:

m sgnðV Þ ffi ½mk þ ðms � mkÞ= coshðbV Þ� tanhðaV Þ, (15)

where ms and mk are the static and kinetic friction coefficients. a and b are parameters governing the friction
curve slope at zero sliding velocity. Eq. (15) reveals that the friction at zero velocity is a smooth curve and
avoids the jump discontinuity. This smoothens eliminates the mathematical difficulties encountered in the
problem of differential inclusion [50].

Eq. (15) requires a kinematical relationship between the relative sliding velocity at the support and the
velocity at the beam center. The sliding velocity is given by the time derivative of the total length of the beam
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L, which is changing as the beam undergoes deflection. The total length is given by

L ¼ 2

Z co

0

ds ¼ 2

Z co

o

ds

dc
dc ¼ 2

Z co

0

dc

k½2 tan co cos c� sin c�1=2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos co

p
k

K 1
. ffiffiffi

2
p	 

� F 1

. ffiffiffi
2
p

;fo

	 
h i
. ð16Þ

The length of the sliding beam is a function of the end slope angle, co, which in turn is a function of the
beam center deflection, d as given by Eqs. (12) and (13). Thus, Eq. (16) relates the beam sliding length L to the
center deflection. For the purpose of the present analysis, it is convenient to express Eq. (16) as a polynomial
function which is obtained by curve fitting. The best-fit polynomial function is expressed as

L

l
¼ 1þ l1

d

l

� �2

, (17)

where l1 ¼ 2.2092. The sliding velocity at the support can be obtained by differentiating Eq. (17) and replacing
the deflection as a non-dimensional variable:

V̄ ¼ 1
2
_~L ¼ l1 ~d

_~d. (18)

The end slope angle, co, is expressed as a function of center displacement and the curve fit approximation of
this relationship is

c0 ¼ s1
d

l
¼ s1 ~d. (19)

The constant s1 ¼ 2.757 when the end slope angle is expressed in radians.
To simplify the dynamic modeling the mass of beam is neglected and the static load is only due to the weight

of the carried machine of mass, m, that produces sinusoidal dynamic unbalance force, F(t) ¼ F0 sinOt, where
F0 and O are the excitation amplitude and frequency, respectively. The total potential energy, PE, is the sum of
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gravitational potential energy and elastic potential energy

PE ¼
EId2

l3
a1

2
þ

a3

4

d

l

� �2

þ
a5

6

d

l

� �4

þ
a7

8

d

l

� �6

þ
a9

10

d

l

� �4

þ
a11

12

d

l

� �10
 !

�mgd. (20)

The kinetic energy of the system is given by

KE ¼ 1
2
m _d

2
. (21)

The externally applied excitation force and the vertical component of the friction force are

Qk ¼ F o sin Otþmg� 2m sgnðV̄ ÞN sin co

¼ F o sin Otþmg�
m sgnðV̄ Þ F ðtÞ þmgð Þ cos l sin co

cosðco � lÞ
. ð22Þ

The function sgnðV̄ Þ is used to specify the sign for the friction force as being opposed to the sliding velocity
V̄ . For brevity, we introduce the friction function Ff(co, l) as

Ff ðc0; lÞ ¼
m sgnðV̄ Þ cos l sin c0

cosðc0 � lÞ
. (23)

Substituting Eqs. (20)–(22) into Lagrange’s equation gives the equation of motion for the isolator as

m €d þ
EIa1

l3
d þ

EIa3

l5
d3
þ

EIa5

l7
d5
þ

EIa7

l9
d7
þ

EIa9

l11
d9
þ

EIa11

l13
d11

¼ ðFo sin OtþmgÞð1� Ff ðco; lÞÞ
� �

. ð24Þ

For the development of the dynamic equation of motion it is necessary to modify Eq. (24) such that the
response displacement is measured from the static equilibrium position. This is done by defining the vibratory
or perturbation component of the deflection as y ¼ d�S, where S, is the static deflection and d is the total
deflection. The static component is obtained from the static equilibrium equation:

a1S þ
a3

l2
S3 þ

a5

l4
S5 þ

a7

l6
S7 þ

a9

l8
S9 þ

a11

l10
S11 ¼ mg

l3

EI
1�

m cos l sin co

cosðco � lÞ

� �
. (25)

Substituting for y ¼ d�S, and Eq. (25) into Eq. (24) gives the equation of motion in terms of the dynamic
displacement, y. Introducing the non-dimensional variables ~y ¼ y=l, ~S ¼ S=l, t ¼ ont, f o ¼ F0=ðmlo2

nÞ, and
n ¼ O/on, and adding viscous damping with damping factor, z, Eq. (24) takes the form

€~yþ 2z_~yþ ~yþ c2 ~y
2 þ c3 ~y

3 þ c4 ~y
4 þ c5 ~y

5 þ c6 ~y
6 þ c7 ~y

7 þ c8 ~y
8 þ c9 ~y

9 þ c10 ~y
10 þ c11 ~y

11

¼ f o sin nt 1� Ff ðcolÞ
� �

, ð26Þ

where

on ¼
EI

ml3
a1 þ 3a3

~S
2
þ 5a5

~S
4
þ 7a7

~S
6
þ 9a9

~S
8
þ 11a11

~S
10

h i� �1=2

is the linear natural frequency of the beam, and the coefficients, ci are given in Appendix A.
Substituting the kinematical relationships for V̄ and co as given by Eqs. (18) and (19) into the expression for

Ff Eq. (24) allows us to express Ff as a function of the central deflection d as

Ff ðc0; V̄ ; lÞ ¼ F f d; V̄ ; l
� 

¼
m sgnðV̄ Þ cos l sinðs1dÞ

cos ðs1dÞ � l½ �
. (27)

The equation of motion (26) describes the dynamics of the beam including the friction at the two supports.
It will be numerically solved to evaluate the steady-state response to a harmonic excitation in Sections 3 and 4.
In Section 5, we will consider the random excitation of the beam. To this end, one should recall some
important features of the unperturbed frictionless system with zero damping. The Hamiltonian of such system
H ¼ KE+PE, of this system and thus one can write the first integral of motion _y2 ¼ 2½H � PEðyÞ�. As long as
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H4PE(y) the phase diagram is periodic closed orbit in the phase space fy; _yg. It was indicated in Ref. [46] that
H reaches its maximum value Hmax ¼ PE(ymax) ¼ 0.02365, where ymax is the maximum beam displacement
when its restoring force vanishes. The periodic orbits are only restricted inside the domain D ¼ fðy; _yÞjH
pHcg, where Hc ¼ Hmax�DH, and DH is sufficiently small. Hc is the critical energy level above which collapse
of the beam will take place, and the trajectories of the motion will be structurally unstable. The motion
corresponding to Hmax ¼ 0.02365 follows a homoclinic orbit with one saddle point on one side of the static
equilibrium position similar to the cases of a biased ship in roll oscillation [46].

3. Steady-state response

The dependence of the friction force on the velocity in the vicinity of zero sliding velocity is characterized by
a steep gradient. This feature makes the equation of motion belongs to a ‘stiff’ system in the numerical
integration. Beginning with prescribed initial conditions, the solver steps through the time interval, computes a
solution at each time step using a user supplied subroutine, which evaluates the force function together with its
derivative. The solution for a given time step is converged if it satisfies the user specified error tolerance
criterion, which is taken as 10�6. If the out of balance force is greater than this tolerance the solver shrinks the
step size and tries again. By far the most commonly used method of predicting the solution for the forward
time step tn+1 based on the converged solution for the present time step tn is the fourth-order Runge–Kutta
method, which requires four evaluations on the right-hand side per step. The forward time step predictions are
augmented using the special formulas (see, e.g., Ref. [51]), which have been shown to enhance the efficiency
and accuracy of the numerical solution for moderately stiff problems such as the one encountered for the
frictional vibrating beam.

The equation of motion for the frictional isolator (26) is reproduced here after dropping the over-tilde
notation and transposing the frictional force term Ff to the left hand side:

€yþ 2z _yþ ðf o sin ntÞF f co; V̄ ; l
� 

þ yþ c2y
2 þ c3y

3 þ c4y
4 þ c5y5

þ c6y6 þ c7y
7 þ c8y8 þ c9y

9 þ c10y10 þ c11y11 ¼ f o sin nt. ð28Þ

Here, Ff ðco; V̄ ; lÞFf ðco; lÞ is the friction force at the support along the direction of motion, and is given by
Eq. (27)

F f ðc0; V̄ ; lÞ ¼
m sgnðV̄ Þ cos l sin c0

cosðc0 � lÞ
, (29)

where l is the friction angle. The expression for the total transmitted force Ft at the support is

Ft ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

te þ ðF td þ F tf Þ
2

q
, (30)

where Fte, Ftd and Ftf are the transmitted elastic, damping and friction forces, respectively. Using the absolute
magnitudes of the terms in Eq. (29) the friction force component Ftf will be

F tf ¼
f om cos l sinðs1aÞ

cosðs1a� lÞ
. (31)

Here, a is the displacement amplitude obtained from the numerical simulation and s1 ¼ 2.757 is the curve fit
coefficient of the end slope deflection equation. Incorporating Eqs. (30) and (31) into the definition of the
transmissibility gives

TRfr ¼
F t

f o

¼
a

f o


1þ

3

4
c3a2 þ

5

8
c5a4 þ

35

64
c7a6 þ

63

128
c9a8 þ

231

512
c11a10

����
����
2

þ 2znþ
f om cos l sinðs1aÞ

a cosðs1a� lÞ

����
����
2

s
. ð32Þ

Fig. 3 shows the transmissibility plots of linear and nonlinear isolators with frictionless supports and
frictional supports (ms ¼ 0.5 and mk ¼ 0.3). It is seen that the transmissibility of the frictional isolator in the
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low-frequency regime is improved when compared with the frictionless isolator and is superior to the linear
one. When the excitation frequency is increased beyond resonance, the friction at the sliding support serves to
improve the transmissibility when compared with the linear isolator. This improvement is attributed to the
reduction in the amplitude of vibration that is a result of the opposing friction force.

The friction also introduces regimes where there is multiperiodic response. These are indicated by the
shaded gray regions in Fig. 3. A segment of the response time history record over a non-dimensional time
window of 50 units, corresponding phase portrait and FFT are shown in Figs. 4(a)–(c). Fig. 4 is generated
under excitation frequency ratio n ¼ 1.22 and amplitude fo ¼ 0.025. It is seen that due the asymmetry about
the time axis, the response possesses non-zero mean, which is reflected in the FFT at zero frequency. The side
frequencies that appear at the excitation frequency ratio n ¼ 1.22 are attributed to the inherent nonlinearity of
the isolator. Under excitation frequency ratio n ¼ 1.94, the response dynamic characteristics are shifted to
mono-periodic non-harmonic oscillations as shown in Figs. 5(a)–(c). Under an increased excitation amplitude
of fo ¼ 0.04 there is a period doubling response at the low excitation frequency n ¼ 0.5 as shown in the time
histories and phase plots of Figs. 6(a)–(c). Figs. 7 and 8 show another two sets of response characteristics at
two different values of excitation frequency ratio n ¼ 2.1 and 2.3667, respectively, and same excitation level,
fo ¼ 0.04. The response shown in Fig. 7 is mono-periodic while Fig. 8 exhibits period doubling. Note that these
plots are generated for the same set of initial conditions. For different initial conditions the response
characteristics may differ mainly due to the system inherent nonlinearity. This will be examined in the next
section.

4. Basins of attraction

The dependence of the response on the initial conditions establishes the basins of attraction for different
response characteristics. Figs. 9(a)–(f) show how the basins of attraction are affected by the value of the
friction coefficient as it increases from mk ¼ 0.0 to 0.3. It is seen that the friction at the support restrains the
beam and limits its deflection to a lower level than the point of instability. In the limiting case when the friction
is infinitely large any sliding at the support will be prevented and the beam would be constrained to a fixed
length. This would physically resemble a beam on simple supports, which is stable for all sets of initial
conditions over the entire phase plane.

Throughout this study the frictional isolator response shows a strong dependence on initial conditions. For
example, Figs. 10(a)–(c) show three response time history records for different initial conditions each
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Fig. 4. (a) Response time history segment over 50 time unit window of frictional isolator showing multi-periodic non-harmonic response

at excitation frequency n ¼ 1.22 and fo ¼ 0.025, ms ¼ 0.5 and mk ¼ 0.3, and (b) phase portrait, and (c) FFT plot.
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estimated for the same friction coefficient mk ¼ 0.3 and excitation parameters n ¼ 0.85 and fo ¼ 0.0329. Note
that Fig. 10(a) reveals a typical stable non-harmonic periodic response for the initial conditions y(0) ¼ �0.015;
_yð0Þ ¼ �0:1936. The response exhibits multiperiodic characteristics for other set of initial conditions
y(0) ¼ �0.106; _yð0Þ ¼ 0:1584 as indicated in Fig. 10(b). For another set of initial conditions y(0) ¼ �0.04;
_yð0Þ ¼ �0:1848 the response becomes unstable as shown in Fig. 10(c).
Fig. 11 shows the dependence of the friction coefficient on the relative velocity for three different values of

the kinetic friction coefficient according to Eq. (15). The dashed–solid point curve defines the locus of the
friction peak where the slope of each curve is zero and any further increase in the sliding velocity produces a
negative slope. This figure will help in better understanding the safety integrity factor that describes the safety
regions of safe basins. The safety integrity factor (also referred to as the stability fraction) Sf is defined as the
ratio of the area of the stable region in the phase plane (area of the safe basin) to the total area encompassed
by the homoclinic orbit (of the unperturbed frictionless undamped system). Sf is evaluated for different levels
of excitation parameters. Fig. 12 shows the dependence of the safety integrity factor on the excitation
amplitude level for the three different values of friction coefficient (mk ¼ 0.1, 0.2, and 0.3) in addition to the
zero friction case (indicated by the solid curve). All three curves show the tendency of the friction to prolong
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Fig. 5. (a) Response time history segment over 50 time unit window of frictional isolator showing multi-periodic non-harmonic response

at excitation frequency n ¼ 1.94 and fo ¼ 0.025 ms ¼ 0.5 and mk ¼ 0.3, and (b) phase portrait, and (c) FFT plot.
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the stable region as reflected in the longer plateau, where Sf stays just under 1.0. However, it is observed that
beyond a critical value of the excitation amplitude fo, the curve drops off sharply. The points where the
frictional curve intersects with the zero friction curve indicates a transition where the sliding friction at the
supports is no longer beneficial in stabilizing the beam vibration. These points are marked as solid circles in
Fig. 11. A closer examination of the state variables at these points indicates that the velocity amplitude under
the corresponding excitation force reaches the critical values identified in Fig. 11 where the slope of the
friction–velocity curve turns negative.

5. Random excitation of the isolator

The study described in the previous sections clearly indicates strong nonlinear characteristics of the isolator
response. The problem becomes more complex when it comes to evaluating its response to random excitation.
The system complexity arises from the nonlinear stiffness terms in addition to the support friction force.
Several techniques have been developed to treat nonlinear systems subjected to random excitations. These
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Fig. 6. (a) Response time history segment over 50 time unit window of frictional isolator showing multi-periodic non-harmonic response

at excitation frequency n ¼ 0.5 and fo ¼ 0.04 and ms ¼ 0.5 and mk ¼ 0.3, (b) phase portrait, and (c) FFT plot.
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techniques include (1) stochastic averaging methods, (2) Ito Stochastic Calculus and Markov methods based
on the Fokker–Planck equation, (3) perturbation techniques, (4) Gaussian and non-Gaussian closure schemes,
(5) equivalent discretization method, and (6) Monte Carlo simulation. These approaches have been applied to
dynamic systems with various forms of nonlinearities. However, there is no general rule about the suitability
of any method for a particular given problem. When the excitation is modeled by a white noise process, the
response of the system constitutes a Markov process and the response transition probability density function
(pdf) is governed by the Fokker–Planck–Kolmogorov (FPK) equation. The solution of the stationary FPK
equation has been obtained for the frictionless system in a closed form [46]. However, in the presence of
friction it is difficult to solve for the corresponding FPK equation. Monte Carlo simulation is widely used for
simulating the behavior of various physical and mathematical systems. It is distinguished from other
numerical simulation methods due to the fact it utilizes random numbers for generating the random
excitation. Because of the repetition of the algorithm and the large number of calculations involved, the Monte
Carlo simulation requires considerable computing resources.
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Fig. 7. (a) Response time history segment over 50 time unit window of frictional isolator showing multi-periodic non-harmonic response

at excitation frequency n ¼ 2.1 and fo ¼ 0.04 and ms ¼ 0.5 and mk ¼ 0.3, (b) phase portrait, and (c) FFT plot.
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The equation of motion which defines the response of the flexible beam isolator subjected to a white noise
excitation W(t) takes the form

€yþ 2z _yþ yþ c2y2 þ c3y
3 þ c4y4 þ c5y

5

þ c6y6 þ c7y
7 þ c8y8 þ c9y

9 þ c10y10 þ c11y11 ¼W ðtÞð1� F f ðco; lÞÞ. ð33Þ

The suitable number of time records which numerically simulate the white noise excitation W(t) is crucial to
the successful implementation of this method. In this study, the MATLAB subroutine RANDN is selected to
generate a sequence of Gaussian distributed random numbers using Marsaglia’s Ziggurat algorithm [52].
These numbers are used to form the excitation time record by assigning them to the excitation force at
successive time intervals. By controlling the value of the correlation time to the value Dt ¼ 0.01 the excitation
approaches a wide band random process. The power spectral density (PSD) function of the input excitation is
evaluated for each excitation record to verify that it is a constant value over a wide frequency band.

The time integration of Eq. (33) for the specific excitation record is followed by evaluating the response
statistics in the time, frequency and amplitude domains. In the time domain the mean E[y] and mean square
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Fig. 8. (a) Response time history segment over 50 time unit window of frictional isolator showing multi-periodic non-harmonic response

at excitation frequency n ¼ 2.3667 and fo ¼ 0.04 ms ¼ 0.5 and mk ¼ 0.3, and (b) phase portrait, and (c) FFT plot.
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E[y2] time histories are evaluated using the discrete formulas:

E½y� ¼
1

T

Z T

0

yðtÞdt ’
Xn

i¼1

yijðtÞ

n
; j ¼ 1; 2; 3; . . . ;N, (34a)

E½y2� ¼
1

T

Z T

0

y2ðtÞdt ’
Xn

i¼1

y2
ijðtÞ

n
; j ¼ 1; 2; 3; . . . ;N, (34b)

where n is the number of time points in each excitation record and N the total number of trials for each
excitation intensity level. It is found that in order to achieve stationary response characteristics each time
history should contain a sequence of n ¼ 38,400 random numbers and each excitation is looped for N ¼ 300
trials. The autocorrelation of the excitation and response time histories are evaluated using the MATLAB
function XCORR and the PSD function using the routine PWELCH. The pdf is estimated using the
KSDENSITY function.
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Fig. 9. Safe basins of attraction showing different response characteristics for different values of friction coefficient. n ¼ 0.85 and

fo ¼ 0.0302 ’: stable periodic non-harmonic response; empty space: unbounded (a) mk ¼ 0.0, (b) mk ¼ 0.15, (c) mk ¼ 0.175, (d) mk ¼ 0.20,

(e) mk ¼ 0.275 (f) mk ¼ 0.3.
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Fig. 10. Influence of initial conditions on the response time history record for mk ¼ 0.3, n ¼ 0.85 and fo ¼ 0.0329: (a) y0 ¼ �0.015,

_y0 ¼ �0:1936, (b) y(0) ¼ �0.106; _yð0Þ ¼ 0:1584, (c) y(0) ¼ �0.04; _yð0Þ ¼ �0:1848.
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The Monte Carlo simulation is carried out for different values of excitation intensity level, pSo/2z. For each
excitation intensity level the response is obtained for the frictionless beam and for the beam with the support
friction coefficient mk ¼ 0.3. The response statistics for the excitation intensity level pSo/2z ¼ 0.0095 are shown
in Figs. 13(a)–(c). The PSD function shows a zero-mean mono-periodic response. The pdf shows a marked
deviation from normality in the form of kurtosis. This characteristic is a reflection of the sporadic spikes in the
time history response (not presented here) and is also accompanied by an elongation of the tails of the pdf. The
mean square response time history shows higher initial oscillations at the outset of the simulation. This
indicates that the friction has a destabilizing effect and the system requires a longer time to reach a stationary
state. The mean square time history settles to a stationary value of 0.00629, which is lower than the frictionless
level due to the friction dissipates energy and thus restrains the beam motion.

The excitation intensity pSo/2z ¼ 0.02366 is identified as the limit based on the homoclinic orbit. The
statistics of the response of this case are shown in Figs. 14(a)–(c) and demonstrate considerable nonlinear
characteristics as indicated by the pdf. The level of kurtosis is indicative of the sporadic spikes in the time
history record (not provided here). The mean square response stays consistently below the frictionless system
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response. The Monte Carlo simulations of both the frictionless and frictional isolator show non stationary
responses for excitation levels beyond pSo/2z ¼ 0.02365 which coincides with the maximum excitation level to
maintain the homoclinic orbit of the unperturbed beam.

Fig. 15 shows the results of the Monte Carlo simulation presented as the dependence of the mean square
response E[y2] on the excitation intensity, pSo/2z. The circles on the graph represent the responses obtained
for the frictionless isolator and the squares for the frictional isolator with mk ¼ 0.3. Also, the closed-form
solution for the frictionless isolator [46] is plotted in Fig. 15. The converged value of the mean square, E[y2],
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Fig. 13. Response statistics for pSo/2z ¼ 0.0095, m ¼ 0.3: (a) response power spectral density, (b) response probability density function,

(c) mean square response time history: : mk ¼ 0.3, - - - - - -: mk ¼ 0.0.
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closely matches the expected value of the total energy E[H] of the closed-form solution [46]. They are related
accordingly:

E½H� ¼ E V ðyÞ þ
1

2
_y2

� �
¼ E

X11
n¼1

cnynþ1

nþ 1
þ

1

2
_y2

" #

¼ E
1

2
y2 þ

1

3
c2y

3 þ
1

4
c3y

4 þ � � � þ
1

2
ny2

� �
’ E½y2�ð_n ¼ 1Þ. ð35Þ

This equation indicates the approximate equivalence between the expected values of the mean square energy
and the mean square response after neglecting the contribution of the higher-order terms to the mean square
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Fig. 14. Response statistics for pSo/2z ¼ 0.02365, m ¼ 0.3: (a) response power spectral density, (b) response probability density function,

(c) mean square response time history: : mk ¼ 0.3, - - - - - -: mk ¼ 0.0.
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energy. The onset of nonlinearity in the response, which occurs at excitation intensity level pSo/2z ¼ 0.006, is
also indicated in both the closed form and simulation results.

6. Conclusions

The influence of friction due to beam sliding at its ends on its dynamic behavior and its efficacy as a
nonlinear isolator has been studied numerically under sinusoidal and random excitation excitations. Under
sinusoidal excitation, the equation of motion of the system is solved numerically and the solution is utilized to
estimate the system transmissibility. It is found that when the excitation frequency is increased beyond
resonance, the friction at the sliding supports serves to improve the transmissibility. The dependence of the
safety integrity factor on excitation amplitude level and friction coefficient reveals that the friction extends the
stable region. Under random excitation, the system response statistics were estimated from Monte Carlo
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simulation results for different values of friction coefficient and excitation PSD level. The friction is found to
result in a significant reduction of the system response mean square. The results of this work need to be
validated experimentally and this task is currently underway.
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